Gamma-rays induced reciprocal translocation in *Nigella damascena* L. (Love-in-a-mist)

Ghosh Anindita and Animesh K. Datta *

Department of Botany, Cytogenetics and Plant Breeding Section, Kalyani University, Kalyani — 741235, West Bengal, India.

Abstract — Gamma irradiations (5, 10, 15 and 20 kR) to *Nigella damascena* L. (love-in-a-mist; family: Ranunculaceae) seeds (moisture content: 8.7%) induced three viable translocation heterozygotes (P-3 and P-15 from 5 kR and P-25 from 10 kR) which on selfing yielded progeny heterozygotes in subsequent generations (R2, R3 and R4; however, P-15 could only be assessed up to R2 generation) exhibiting the formation of either a ring or a chain of four chromosomes in 14.8-54.6% meioocytes. Mean quadrivalent frequency per cell was assessed to be 0.40-0.66 in P-3, 0.43-0.64 in P-15 and 0.15-0.47 in P-25. Configuration and orientation of the multiples in the heterozygotes assessed over the generations indicated a possible genetic control over the mechanism. Normal 6/6 separation of chromosomes at AI (55.86-100.00%) of the heterozygotes did not correlate significantly (r = 0.29, 27 DF) with pollen fertility (6.98-46.38%). Pollen fertility showed negative and insignificant correlation (r = -0.20, 27 DF) with seed set per plant (0.0-495.0). Total failure of seed setting in heterozygotes has been attributed to defective female gametogenesis. F1s raised from intercrossing (R1) of P-3, P-15, and P-25 were meiotically assessed and the results indicated that the same two non-homologous chromosomes were involved in translocation and the two longest chromosome pairs A1A1 (nucleolar pair) and A2A2 were suggested to be associated.

Key words: chromosome identification; gamma-rays; *Nigella damascena*; progeny analysis; translocation heterozygotes.

INTRODUCTION

Nigella damascena L. (love-in-a-mist), a member of the family Ranunculaceae, is an ornamental plant and is a good material for cytological studies as it has relatively low number of chromosomes (2n = 12) of suitable sizes and good stainability and possesses graded karyotype with a marker telocentric pair (Datta and Saha 2003). Such cytological novelty can be explored for understanding cytogenetical behaviour of plant types of interest (Datta et al. 2003; Ghosh and Datta 2004). Present authors have induced three viable translocation heterozygotes in *N. damascena* following gamma irradiations (Ghosh and Datta 2003) as a part of research initiated in the species for improvement by the manipulation of genetic and cytogenetic consequences of induced mutagenesis and this paper describes comprehensive meiotic chromosome behaviour of the translocation heterozygotes assessed over the generations based on configuration and orientation of the interchanged multiples and their subsequent effect on fertility. Further, meiotic plates have been used to identify the chromosomes involved in translocation following karyotype analysis. Reciprocal translocation is an important tool for chromosome manipulation and viable translocation heterozygotes have immense value in breeding behaviour of the crop besides its utmost significance in understanding gene and chromosome relationship of the species.

MATERIAL AND METHODS

Plant material - Dry seed of *Nigella damascena* L. (mother seed stock obtained from Royal Botanic Garden, Kew, London — accession no. 0016287) having 8.7% moisture content were exposed to gamma-rays (5, 10, 15 and 20 kR from 60Co source at the rate of 1kR for 2 mins. 24 secs.) and three translocation heterozygotes (Plant no. 3 and 15 from 5 kR and P-25 from 10 kR) were screened from R1 population following meiotic analysis (PMCs and pollens were stained in 1% propionocarmine solution; fully stained pollens were considered fertile).
RESULTS AND DISCUSSION

Mitotic chromosome type in N. damascena - Three morphologically distinct chromosome types (A, B and C) have been recorded (Figs. 1 and 2) in control plants (2n = 12) on the basis of chromosome length (A-long chromosomes = 13.0 to <15.0 μm; B-medium = 7.0 to <13.0 μm and C — short = less than 7.0 μm), nature of primary constrictions and presence or absence of secondary constrictions. The somatic complement possessed 1 pair A1A1 (absolute length 13.96 μm; F% 41.46; with satellites), 1 pair A1A2 (absolute length 13.62 μm; F% 46.46), 1 pair A1A3 (absolute length 13.07 μm; F% 40.04; with satellites), 2 pairs of BB (B1B1 — absolute length 11.78 μm; B% 44.93 and B2B2 — absolute length 11.18 μm; F% 43.54) and 1 pair CC (absolute length 6.53 μm; F% 14.59) chromosomes. These chromosomes could easily be identified and marked in meiotic plates of translocated plants (Figs. 4-6). Previously, DATTA and SAHA (2003) reported four chromosome types (A-D) in the species.

Meiotic analysis - The average chromosome association per cell assessed over the generations in control plants (Fig. 3) have been 5.88 II +0.25 I (2n =12, 120 PMCs scored). The marked plants (P-3, P-15 and P-25) obtained through gamma irradiations and their heterozygote progenies (1 mostly and rarely 2 to 5 from 20.0 to 32.0 per cent germinated plants in each line) exhibited the formation of ring or a chain of 4 chromosomes (Figs. 4-6) in 14.8% to 54.6% meiocytes (2n=12) indicating well organised reciprocal exchanges involving 2 non-homologous chromosomes. Mean quadrivalent frequency per cell in heterozygote lines (P-3: 0.40-0.66, P-15: 0.43-0.64 and P-25: 0.15-0.47) was non random when assessed over the generations (X2 = 21.86, 2DF, P value > 0.001) but was random among the plants of P-3 assessed at R3 (X2 = 11.98, 8 DF, P value > 0.20) and among floral buds of a heterozygote of P-3 line (P value 0.10-0.40) as evidenced from X2 — test of heterogeneity. Predominant association noted among the heterozygote lines has been 1 IV + 4 II (P-3: 33.7-62.3%; P-15: 29.1-63.9%; P-25: 13.3-40.0%).

Configuration of the multiple in induced heterozygotes (R3) were random but their progenies in subsequent generations demonstrated preponderance of either ring (R) or chain (C) or random (RC) configurations in meiocytes. Progeny heterozygotes having significantly higher frequency of ring or chain quadrivalents in PMCs gave rise to progenies with greater ring or chain multiple respectively. Rings (Figs. 4 and 6) were found when the interchanged parts of the chromosomes were long and more or less equal in length and the break points was closer to centromere; while, a chain (Fig. 5) of 4 chromosomes was formed when the exchanged chromosomal piece was relatively short (BURNHAM 1956; BURNHAM and HAGBERG 1956). KAUL (1977) was of opinion that the breakage and exchange of heterologous chromosomes are genetically conditioned and controlled, thereby eliminating the ‘chance factor’ operating for the predominance of either ring or chain or both. In the present investigation, orientation of multiples were either random (r) or more of adjacent type (ad). Heterozygotes with random orien-
Chart 1 — Translocation heterozygotes at different generations showing configuration (bold) and orientation (italics) of multiple with frequency of 6/6 AI cells, pollen fertility (%) and seed set per plant; * fruit-setting but seedless.
Figs. 1-6 — Mitotic (1-2) and meiotic (3-6) chromosomes (2n = 12) in *Nigella damascena*. 1) Metaphase showing chromosome types. 2) Idiogram. Bar in mitotic plates = 6.527 μm. 3) 6 II at metaphase I. 4) 1 IV + 4 II at diplotene. 5-6) 1 IV + 4 II at MI with alternate orientation of chain (5) and ring (6) multiples. Interchanged configurations (➡️), A₁₁ A₃ (➡️) and CC (➡️) pairs have been marked in meiotic plates.
tion gave rise to progenies with random and adjacent types; while, adjacent type produced only adjacent orientation (exception: PR3-3,3-1 and PR3-3,3). Rings tended to orient as adjacent whereas chains had a more frequent alternate orientation. Therefore, analysis of heterozygotes in relation to configuration and orientation of the multiples assessed from self segregating lines over the generations indicated a possible genetic control over the mechanism. Such configuration and orientation of the multiples have also been documented in viable translocation lines of Nigella sativa (Saha and Datta 2002). This explains the deviations from expectation that reciprocal translocation in a particular species shows either random or directed (significantly more than 50% meiocytes showing alternate configurations) orientation of the interchanged complexes at metaphase I but not both (Burnham 1956).

Genetic control of alternate segregation has been evidenced by Thompson (1956 a; b) and Lawrence (1958) in rye. On the contrary, orientation of interchanged complex have been considered to be mechanical in nature with genetic control being the secondary determinant factor (Garbar and Dhillon 1962; Zaman and Rai 1972). Greater flexibility of chain quadrivalent resulting mostly in alternate orientation (Ostergren 1951; Lewis and John 1963) supported the mechanical hypothesis.

High frequency of normal 6/6 separation of chromosomes at anaphase I of the heterozygotes (55.86% to 100.00%) did not correlate significantly (r = 0.29, 27 DF) with pollen fertility (6.98% to 46.38%), thereby, indicating that all cytologically balanced AI cells were surely not genetically balanced. Although predominant occurrence of adjacent orientation in quadrivalents in heterozygotes is expected to induce high frequency of adjacent orientation in quadrivalents in heterozygotes (Ostergren 1951; Lewis and John 1963) supported the mechanical hypothesis.

REFERENCES

Received 22.08.2005; accepted 02.02.2006